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ABSTRACT

Within NASA and the European Space Agency (ESA) it is agreed that autonomy is an impc9rtantgoal for the design of future spacecraft,
and that this requires on-board Artificial Intelligence. NASA emphasises deep space and planetary rover missions, while ESA considers
on-board autonomy as an enabling technology for missions that must cope with imperfect communications. ESA's attention is on the
space/ground system.

A major issue is the optimal distribution of intelligent functions within the space/ground system. This paper describes the Multi-Agent
Architecture for Space/Ground Systems (MAASGS) which would enable this issue to be investigated. A MAASGS agent may model a
complete spacecraft, a spacecraft subsystem or payload, a ground segment, a Spacecraft Control System, a human operator, or an
environment. The MAASGS architecture hasevolved through a series of prototypes. The paper recommends that the MAASGS architecture
should be implemented in the operational Dutch Utilisation Centre.

INTRODUCTION

Within NASA and the European Space Agency (ESA)

it is agreed that autonomy is an important goal for the

design of future spacecraft, and that this requires on-

board Artificial Intelligence. NASA's emphasis has
been on deep space and planetary rover missions. ESA

is considering greater on-board autonomy as a potential

enabling technology for missions that must cope with
communication delays or interruptions, as well as a

way of reducing spacecraft operations costs. A series of

ESA studies has resulted in the development of the

Standard Generic Approach to Spacecraft Autonomy
and Automation (SGASAA) concept.

Until recently, the emphasis has been on the space
segment. ESA's attention is now turning to the

complete system comprising both the space and ground

segments: the space�ground system. A major issue is
the optimal distribution of intelligent functions such

that the space/ground system design results in a clearly
quantifiable reduction in operational costs, without

other adverse effects (e.g., on spacecraft reliability).

Potential applications are foreseen in the ground-based
Command and Control (C 2) of spacecraft which are

subject to delays or interruptions in communication,

e.g. deep space missions and missions partly visible
from ground stations.

This paper describes the Multi-Agent Architecture for

Space/Ground Systems (MAASGS) which enables the

issue to be investigated. A MAASGS agent may model

a complete spacecraft, a spacecraft subsystem or

payload, a ground segment, a Spacecraft Control
System, a human operator, or an environment. The

architecture - developed for the Dutch Utilisation

Centre (DUC) (Pronk, Koopman & de Hoop, 1992) - is

based on Multi-Agent Systems (MAS) techniques. A
MAASGS agent may model a complete spacecraft, a

spacecraft subsystem or payload, a ground segment, a
Spacecraft Control System, a human operator, or an

environment. The MAASGS architecture has evolved

under company and Dutch national investment through
a series of prototypes. The paper concludes that the

architecture is now mature, ,'rod recommends that it be

implemented for use in the operational DUC.
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Therearefive sectionsin thispaper.Section2 outlines
theSGASAAconcept.Section3 motivatestheuseof
MAS techniques.Section4 describesthe MAASGS
architecture,includingits evolutionand associated
developmentmethodology.Finally, Section5 draws
conclusionsandmakesrecommendations.

SGASAA CONCEPT

Defining Autonom_

Spacecraft autonomy can be loosely defined as the
ability of a spacecraft to be largely or wholly

independent of ground control (Pidgeon, Seaton,
Howard and Peters, 1992). More precise definitions are

mission-dependent. For scientific and communications

satellites, the main drivers for autonomy are:

- Short and infrequent periods of ground station

contact mean that there is little visibility of on-

board events. Consequently, there is little

opportunity for ground-based control to
influence on-board events. The spacecraft must

perform basic monitoring and control.

Long transmission delays mean that the
mission would not be practicable without some

degree of autonomy.

The need to maximise the mission product in

the event of an internal or extemal event (e.g.

on-board failure or change in its environment)

means that the reaction time should be kept as

short as possible. Autonomy reduces the need
for the spacecraft to refer to the ground

segment for a decision.

Long duration missions where operations costs

could be significantly reduced.

Autonomous Functionalities

A number of studies (Devita and Turner, 1984),

(Doxiadis, 1988), (Drabble, 1991), (Elfving and
Kirchhoff, 1991) have been conducted for various

agencies to investigate approaches to spacecraft
autonomy. ESA's studies, begun in the early 1980s,

culminated in the SGASAA concept (Berger, Comet,

Cellier, Riou, Sotta and Thibaut, 1984). By the

beginning of the 1990s, ESA had progressed to
validating the SGASAA concept, in the Spacecraft

Autonomy Concept Validation (SACV) study (Pidgeon,

Seaton, Howard and Peters, 1992).

For scientific satellites, autonomy is viewed as

replacing (or supplementing) ground-based operator
functions with on-board functions. The SACV study

listed the foreseen on-board functionality as:

Execution, updating and rescheduling of a
Master Schedule, which is a set of high-level,

time-tagged, goal-oriented commands stored
on-board. Rescheduling would take into

account the commands' resource requirements,

the availability of on-board resources, the

dependencies between commands, and
environmental and timing constraints.

Fault diagnosis would be performed on-board.
The autonomous spacecraft would attempt to
recover from a failure, while ensuring the

spacecraft's safety and minimising the loss of
the mission product. Fault diagnosis could only

cater for foreseen failure modes. Unforeseen
failures would have to result in the spacecraft

adopting a safe mode to await ground

intervention.

For reasons which are unclear, the SACV study omitted

a third possible on-board functionality: goal-oriented

planning. Goal-oriented planning was always seen as

having an equal priority with other functionalities (e.g.
see (Berger, Comet, Cellier, Riou, Sotta and Thibaut,

1984), Volume 1, Figure 5.2/4). Therefore, this paper
assumes that the on-board functionality must include:

Goal-oriented planning (and re-planning),

which must:
Take the (re-)planning activity into

account.

Be interruptible.
- Be able to generate alternative plans

for the same requirements.

The Concept

A common thread amongst the spacecraft autonomy

studies has been the adoption of a hierarchically-based

On-Board Management Systems (OBMS). The OBMS
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consistsof a high-levelOn-BoardMissionManager
(OBMM)togetherwithvarioussubordinatesubsystem
antipayloadmanagers(genericallytermedSub-System
Managers(SSMs)).TheOBMMmonitors,coordinates
and controls the SSMs,and each SSM monitors,
coordinatesandcontrolsasubsystemorapayload.The
OBMS is supportedby a distributedon-board
communicationsarchitecturewith the managers
communicatingvia a LAN or databus,and each
subsystemandpayloadbeingconnectedto itsSSMvia
a subassemblyLAN. TheSSMeffectivelyactsasa
bridge between the subassemblyLAN and the
spacecraftLAN. From outsidethe subsystemor
payload,theSSMappearsto 'wrap' thesubsystemor
payloadwithadditionalfunctionalities.

TheSGASAAconceptadoptedadistributedhierarchy
on the grounds that decision-makingshould be
devolvedto thelowestpossiblelevelin thehierarchy.
Figure1depictstheconceptualSGASAAarchitecture.
The spacecraftconsistsof a set of "intelligent"
subsystemsand payloads,each of which has the
capabilityto interpretTelecommand(TC)packetsand
togenerateTelemetry(TM)packets.PacketisedTM/TC
is a prerequisitefor theSGASAAapproach.
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Figure 1: SGASAA Architecture.

The SGASAA approach relies on the concept of a

series of layered mission plans. Low-level plans are

generated from the plan above by adding detail. For

example, the Long Term Operations Plan (LTOP).

which defines the objectives for an entire mission or
mission phase, can be broken down into a series of

components (Links) which are uplinked to the
spacecraft and executed on-board. Links describe

actions which can be achieved at system level by a

combination of activities at subsystem level. The Short

Term Operations Plan (STOP), covering a period of
several days, consists of a set of links with coarse

parameters. These are rescheduled with precise
parameters, reflecting the current on-board state, and

broken down into a sequence of blocks. The Executable

Operations Plan (EOP) contains blocks of actions for

a single subsystem or payload, usually in the form of
macro-commands which are expanded on-board. The

Elementary Commands (EC) are time-tagged commands

contained within an EOP, each normally affecting only
a single element of the subsystem, e.g. switching a
heater on.

Plans are validated and optimised at each level, refining
the plan from a coarse LTOP to detailed ECs. The

SGASAA concept also allows for direct commanding
of subsystems, bypassing the OBMM. A limitation of

the SGASAA plan hierarchy is that higher-level plans

must contain information about the lower-level plans,
such as resource usage, duration, dependencies, etc.

This means that planning is necessarily an iterative

process, with lower-level plans providing feedback to
higher-level plans.

The OBMM and the Subsystem and Payload Managers
have prescribed roles (see (Pidgeon, Seaton, Howard

and Peters, 1992), section 2.3). Comparison of these

roles shows that each SSM has the same functionality
as the OBMM, albeit for a more detailed subset of the

spacecraft (i.e. the subsystem or payload for which the
SSM is responsible). The-common functionalities are:

Distribution and execution of TCs.
Generation of TMs.

Fault diagnosis.

Failure recovery.

Localised planning.

Self-checking.

The SGASAA concept defines three modes of
operations:

Routine Mode, in which nominal and expected
tasks are executed.

Crisis mode, which is the handling of

unexpected events on-board the spacecraft or
due Io external influences.
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Check-out Mode, in which the spacecraft is

placed in a configuration which allows
hardware and/or software to be tested.

MASs can provide insights and understanding
about interactions among humans, who

organise themselves into various groups,
committees, and societies to solve problems.

MOTIVATION FOR MULTI-AGENT SYSTEMS

Multi-Agent Systems

Distributed Artificial Intelligence is defined as "the
subfield of AI concerned with concurrency in AI

computations" (Bond and Gasser, 1988, p.3). Bond and
Gasser divide the world of DAI into three arenas:

Distributed Problem Solving, Multi-Agent Systems, and

Parallel AI. In this paper, we are concerned with Multi-

Agent Systems (MASs), i.e. "with coordinating

intelligent behaviour among a collection of (possibly

pre-existing) autonomous intelligent 'agents', which can
coordinate their knowledge, goals, skills, and plans

jointly to take action or to solve problems" (ibid., p. 3).

Typical intelligent behaviours are to generate plans and
schedules, to react appropriately to situations (including

diagnosing and recovering from failure), and to learn.
The agents may be working towards a single, global

goal, or towards separate, individual goals that can
conflict. Crucially, "they must ... reason about the

processes of coordination among the agents" (Bond and
Gasser, 1988, p.3, italics in original). The task of

coordination can be difficult, because there may be
situations where there is no global control, no globally

consistent knowledge, no globally shared goals, and/or

no global success criteria. Reviews of MAS techniques

and trends may be found in (Castillo-Hern and Wilk,

1988), (Grant, 1992), and (Chaib-Draa, Moulin,

Mandiau and Miliot, 1992).

There is no consensus definition of an agent. Bond and

Gasser skirt around the issue; they rely on a simple and

intuitive notion of an agent as a computation process

with a single locus of control and/or "intention" (ibid.,

p.3, footnote 1). For the purposes of this paper, an

agent will be defined as a software entity with
autonomous processing capabilities and a private
database, which acts on its environment on the basis of

information it receives from the environment.

Motivations for Using MAS Technioues

Huhns (1987) lists five primary reasons why one would

want to use MAS techniques:

MAS techniques can provide the means for

interconnecting multiple expert systems that

have different, but possibly overlapping, areas

of expertise. This permits the solution of

problems whose domains lies outside the area

of expertise of any one expert system.

MASs can potentially solve problems that are

too large for a centralised system because of
resource limitations (eg bandwidths, computing

speeds, and reliability) induced by technology.

MASs can potentially provide a solution to a
current limitation of knowledge engineering:

the use of only one expert. If there are several

experts or several non-experts whose ability
can be combined to give expert-level

behaviour, there is no established way to use

them successfully.

MAS techniques are the most appropriate

solution when the problem itself is inherently
distributed, as in distributed sensor networks

and distributed information retrieval.

Clearly, the last reason is the prime motivation for

applying MAS techniques to space/ground systems.

Huhns (1987) also listed the following advantages for

system development:

Partitioning the software system into agents

reduces the complexity, resulting in a system
that is easier to develop, test, and maintain.

The software subsystems (i.e., agents) can

operate in parallel.

The software system can be designed - using

the functionally accurate approach (Lesser and
Corkill, 1981) - to continue to operate even if

part of it fails.

It is easier to find experts in narrow domains.
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MAS Issues

The following issues are relevant to this paper:

Structuring the functionalities intemal to an

a_ent. A wealth of differing agent structures
exists in the MAS and C3I literatures. The

MAASGS architecture has evolved an agent

structure from object-oriented systems by

adding concepts from C3I theory and then by
specialising this for spacecraft operational
control.

Representing the agent's knowledge of its

environment. Investigation of possible ways

of representing the agent's knowledge of its
environment is a major sub-field of MAS

research. Representations vary from the agent-
attribute-value model to logics of belief which

are modelled on human psychology. We use
the simple agent-attribute-value model, with the

attributes being typed according to the
functionality which operates on them. For

example, the attributes might be rules, Hom
clauses, planning operators, or constraints, as

well as datatypes such as booleans, integers,
reals, strings, etc.

Enabling agents to communicate with one

another. Chaib-Draa, Moulin, Mandiau and

Millot (1992) identifies solutions to inter-agent

communications ranging from no

communication, through primitive

communication, plan and information passing,
information exchange via a blackboard,

message-passing, to high-level communication.

The MAASGS architecture adopts the message-

passing model because this models closely the
packetised TM/TC used in modem spacecraft,

and can be readily implemented using the

message-passing model employed in object-
oriented programming languages such as
Smalltalk, C++, CLOS and Eiffel.

Enabling agents to coordinate their actions.
Agents must coordinate their distributed

resources, which may be physical or

computational. The most appropriate
coordination technique depends on the
distribution of the shared resources and on the

local autonomy of agents, which may have

disparate goals, knowledge and reasoning
processes. Generally, DAI researchers use the

negotiation process to coordinate a group of
agents. There are various definitions for

negotiation. We adopt Bussmann and Mfiller's

(1993) definition of negotiation as "the

communication process of a group of agents in

order to reach a mutually accepted agreement

on some matter". A variant is arbitration, in

which the group of agents appeal to an
impartial agent to reach the agreement. In DAI,

negotiation is often implemented as the

Contract Net Protocol (Davis and Smith, 1983),

in which an agent needing help decomposes the
problem into subproblems, announces the

opportunity to solve the subproblems to the
group, collects bids for their solution from

group members, and awards the subproblems to
the most suitable bidders. The MAASGS

architecture can accommodate a range of
coordination protocols, including an arbitration

protocol which supports inter-agent leaming
(Grant and Lenting, 1993).

Modelling domains by means of agents.

Borrowing from object-oriented simulation, we

follow the fundamental principle of modelling
each real-world object - whether or not it has

any intelligent functionality - as an agent.
There are two ways to model domains in this

way: agents may be specialists or they may be

generalists. Specialist agents have functionality
that is specific to the role of the real-world

object being modelled, e.g., transforming X-

rays into data, calculating spacecraft orbits, and

so on. By contrast, generalist agents all have

the same generic functionalities, e.g., rule-based

inference, goal-oriented planning, constraint-
based scheduling, and so on. The MAASGS

architecture employs generalist agents.
Examples of the generic functionalities in the

MAASGS architecture are receip[ of TCs,

generalion of TMs, monitoring other agents'
status, diagnosis, selection of procedures, goal-

oriented planning, scheduling, etc. There is a
small sel of agent-classes, derived from Grant's

(1992a) abstraction hierarchy. The agent-class
which models the non-intelligent domain

objects, such as payload componenls,
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implements only receipt of TCs, generation of
TMs, and internal computation. Another agent-

class models intelligent domain objects, such as

SSMs.

Qrganisin_ a_ents to represent distributed
systems,. Elaborate schemes have been
devised to represent organisations of agents.

We have adopted the simple idea that an agent

can be decomposed into more primitive agents.

Despite its anthropomorphic title in the DAI
literature - where it is known as Minsky's

(1986) "Society of Minds" concept - the idea of

decomposition is to be found in any industrial-

strength software analysis or design method,

e.g. SADT and dataflow diagramming. Domain
decomposition hierarchies are usually easy to
find. For example, the very first sentence in an
ESA Bulletin article on the use of spacecraft

simulators at ESOC (Gujer and Jabs, 1991)

states (p. 41):

"A satellite mission can be considered in its

simplest form to consist of a space segment, a

ground segment and a user community ... The

ground segment for an ESA mission ...
includes: a set of ground stations .... a

communications network .... the Operations

Control Centre (OCC) .... payload data-

processing facilities ..."

The same article later states (p. 46):

"Figure 6 shows the layout of a typical

spacecraft model as implemented in most
simulators. It closely reflects the standard

decomposition of a spacecraft into subsystems."

In the MAASGS architecture, decomposition

hierarchies are modelled by enabling any agent

to have zero or one superior agents and zero or
more subordinate agents. The superior

represents the assembly of which the agent is a
part, and the subordinates represent the

component parts of the agent. This approach

implies that each node in the decomposition

hierarchy is modelled as an agent, and not just

the leaf-nodes.

THE MAASGS ARCHITECTURE

Evolution

The MAASGS architecture has evolved by specialising

the generic agent structure. The first step was to

incorporate classic C3I features, based on Wohl's
Stimulus-Hypothesis-Option-Response (SHOR) model

of decision-making (Wohl, 1981). This resulted in the

Message-Based Architecture testbed (Grant, 1991),

developed as a private venture. The testbed was

designed primarily as a "test harness" for an inductive
learning algorithm. The reactive and generative

planning functionalities were deliberately designed to
be the minimum necessary to close the loop from the

inductive learning algorithm's output back to its input.
The testbed successfully demonstrated learning-by-

doing (Anzai and Simon, 1979).

The second step was a paper study of an agent structure
suited to the Columbus User Support Organisation

(USO), based on the lessons learned in developing and

using the Message-Based Architecture testbed. This
study was a part of BSO/Aerospace & Systems' "DUC

Preparation" (DUCPREP) project. The DUCPREP

project was funded by company and Dutch national
investment and performed in informal cooperation with
a number of other Dutch companies. The agent

structure proposed for the DUC was documented in

(Grant, 1992a).

In the third step, the internal functionalities of a

Message-Based Architecture agent were extracted and
enhanced. The resulting DUC Activity Scheduling

System (DUC-ASS) is a single-agent software system

capable of integrating the support of payload design,

planning, scheduling, and control (Grant, 1992b).
Prototyping of the DUC-ASS was performed under

BSO/Aerospace & Systems' "MILDS" project, also

funded by company and national investment. The

MILDS project fom_ed an element of the larger "DUC-

Pilot" project perfomaed by a Dutch consortium. Under
the DUC-Pilot project, an interface was defined (Grant
and Tusveld, 1992) for coupling the DUC-ASS to a

diagnostic system which used model-based reasoning

techniques. Current DUC-related developments (Pronk,

Visser and Sijmonsma, 1993) centre on linking the pilot
DUC to ESTEC's Crew Work Station testbed for

Mission Simulation purposes.
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TheMAASGSarchitectureuses the DUe-ASS agent

structure, enhanced to incorporate the scheduling and

model-b_sed diagnosis functionalities. Although the

MAASGS architecture has not yet been implemented in

full, the key functionalities have all been implemented.
The interfaces between them have been defined to

varying levels of detail. Two related issues have been

addressed by exploratory prototyping: recognising
objects during leaming (Grant, van Meenen and

Stroobach, 1992), and the modeller's graphical user

interface (Grant, 1993a). In addition, the Message-

Based Architecture testbed has been recently enhanced

to enable agents to exchange learned knowledge, i.e.

they can also leam-by-being-told (Grant, 1993b).

Agent Structure

AGENT i ExN_'_S,pmme

•,_ LI_ InWde_e

•4,Exte_l Symms

Figure 2: Generic Structure of an Agent.

There are four components in a generic agent (see

Figure 2). Input Handling receives and filters the

incoming messages from other agents, from a user

interface, and from extemal systems. Processing

operates on the filtered incoming messages, retrieving

and storing information in the agent's private Database,

and generating messages to send. Output Handling

formats and despatches the outgoing messagesto other

agents, to the user interface, and to external systems.

Such an agent is a specialisation of an object in object-

oriented systems. An agent has a unique name,
autonomous processing capabilities (cf. methods), and

a private database (cf. attributes and their values), and

exchanges information with its environment (cf.

message-passing). Some MASs also have agent classes

and inheritance. MASs have functionality that extends

beyond that of object-oriented systems. In particular,

agents in MASs are intelligent agents. Typical

intelligent behaviours are to react appropriately to

situations, to generate plans, and to learn. These

behaviours can be best modelled using AI techniques,

such as expert systems, knowledge-based planning
(Georgeff, 1987), and machine leaming (Michalski,

Carbonell and Mitchell, 1983). We distinguish agents

from objects by requiring that an agent minimally
includes the abilities to:

Model its own state and behaviour, and

Decide whether or not to accept a new state its

environment attempts to impose on it.

Such an agent is termed a non-intentional agent (Grant,
1992). lntentionality means to have attitudes towards

other agents (Searle, 1980), such as intentions, goals,

desires, or beliefs. Any agent which generates

instructions, forms plans, or leams about other agents
is necessarily intentional.

An abstraction hierarchy of agents may be built on the

minimal set of abilities. Grant (1992) proposes an

abstraction hierarchy in which an intentional agent also
has the abilities to:

Model its own goals,

Model other (non-intentional) agents, and

Manage a negotiation or arbitration process

between other agents.

At the very least, intentional agents are aware of the

existence of other agents in their environment.
Following the precedent set by the MACE testbed

(Gasser, Braganza and Herman, 1987), the other agents

are usually known as the agent's acquaintances. In
many MASs, agents also know about their

acquaintances' behaviours, i.e., their capabilities.

Agent-Based Simulation

Application domains may be modelled as collections of

agents. As in object-oriented simulation, a set of

entities must be provided which the modeller can
instantiate to represent the domain. There are two

fundamental set-elements in object-oriented simulations:

object-classes (cf. Smalltaik's Class object-class) and

messages (cf. Smalltalk's Message object-class). In

agent-based simulation, the equivalent entities are

agent-classes and messages. The distinction between
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objectsandagentsimpliesthat additionalentitiesare
neededto representtheagentstructure.Preciselywhat
additional entities are provided dependson the
simulationdevelopmentenvironmentdesigner.Our
experienceshowsthat a suitableset of additional
entitiesshouldincludeagent structuring, inter-agent

message-handling, inter-system interfacing, user

interface, and agent organisation entities. More details

are in (Grant, 1993a).

In addition, there must be a domain-independent

Simulation Development Environment (SDE),

comprising a simulation executive, a set of tools, a user
interface, and, optionally, interfaces to extemal systems.

A database management system may also be provided

where the agents in the simulation model are not

persistent. The SDE may itself be implemented as a

second collection of agents. Issues conceming the SDE
are outside the scope of this paper. The wider issues

concerning how AI and simulation techniques may

complement one another are covered by Widman,

Loparo and Nielsen (1989).

Adding C31 Features

The SHOR model describes a data-driven or reactive

approach to problem-solving and decision-making. The
model identifies four information-handling processes.

Stimulus involves the processing of raw data received

from the decision-maker's environment via sensors.

Processing includes searching for data, scanning or
sampling it, reducing, compressing, and aggregating the

scanned/sampled data, and detecting, recognising and

confirming events signalled by the data. The decision-
maker interacts with the environment, eg by directing

sensors. Hypothesis involves the generation and

evaluation of hypotheses conceming the environment's

state-of-affairs, based on the outputs of Stimulus.

Processing includes data association and correlation,
state and parameter estimation, hypothesis generation,
situation assessment, and decision state estimation. The

decision-maker is essentially passive to the external

environment while he/she focuses on the analysis task.

Option concerns the generation, planning and
evaluation of alternative options for the decision-

maker's response to the estimated decision state.

Response concems the execution of the selected

response. Execution involves the issue of information
to the decision-maker's environment, either by physical

action or by communicative action.

Various authors view Wohl's Stimulus and Hypothesis

in terms of the data processing techniques employed.

Event detection, recognition, and confirmation through
to decision state estimation are grouped together as

data fusion, defined (Waltz & Llinas, 1990, p. 1) as:

"A multi-level, multi-faceted process dealing

with the detection, association, correlation,

estimation and combination of data and

information from multiple sources to achieve
refined state and identity estimation, and

complete assessments of situation ...".

Thus, data fusion maps onto the latter part of Stimulus,

combined with Hypothesis. In Wohl's Hypothesis

process, the decision-maker associates the events

recognised during Stimulus processing with objects in
the environment. The states and other parameters of

these objects can then be estimated.

J J I I

Figure 3: Agent Structure Enhanced with C3I
Features.

Enhancing the generic agent structure results in the
structure shown in Figure 3. Input Handling (cf.

Stimulus) becomes the Perception module, and output

processing becomes Execution. Processing is now
divided into the Assessment and Response modules (cf.

Hypothesis and Option), and World Model

encompasses Database. Figure 3 shows the modules

grouped by the military terms "Communication",

"Intelligence", and "Command and Control".

The C3I-enhanced structure works according to the "do-

as-little-work-as-possible" principle. For example, if the

Perception module filters out an incoming message as

having nothing to do with tlae agent, processing stops
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at that point. Similarly, the Assessment module, which

uses co.nstraint-based techniques to check the
c6nsistency of the World Model after the incoming
information has been added to it, can decide to

terminate processing if the incoming information is

consistent with what the agent already knows. Only if

an inconsistency or conflict is found does the

Assessment module trigger the Response module.

Inti_tl_al _t

Figure 4: Structure of Intentional Agent.

The agent structure shown in Figure 3 has the

capability of a non-intentional agent. It can react to
events, but it cannot plan ahead. In AI terms, it is

limited to forward-chaining (or data-driven) reasoning.

The danger is that such an agent can get into a situation

from where it is impossible to reach its goals: a "cul-

de-sac" world-state. To obtain an intentional agent, the

agent structure must be further enhanced with planning
functionality (see Figure 4). The Planning module can

be seen as providing a planning service to the Response
module. Other intentional functionalities, such as

scheduling and learning, can be added as further

services to the Response module.

MAASGS Architecture

The MAASGS agent structure, shown in Figure 5, has

clear correspondences to the structure of an intentional

agent in the Message-Based Architecture test-bed. The

Monitoring module, together with the Status Database,

is equivalent to the Message-Based Architecture's

Perception and World Model modules. The Detection

module performs situation assessment. Response

selection is performed by the Isolation, Diagnosis, and

Recovery modules. The Real-Time Replanning and

Scheduling module replaces the Planning Module. The

Execution and Predictive Payload Simulator (PLS)

modules perform the functions of the Message-Based
Architecture's Execution module.

The Detection, Isolation, Diagnosis and Recovery
modules are grouped together as the ADIR assembly,

where the ,'A" stands for "Anomaly". Normally, such a

grouping of functionalities would be termed "FDIR",
where the "F" stands for "Fault". In the MAASGS

architecture, the functionalities are generalised to

encompass anomalous situations. An anomaly exists

whenever the telemetry indicates that a parameter has

a value which either falls outside its alarm or warning

levels or is unplanned or unexpected. Unplanned values

may still be beneficial, i.e., serendipitous. Therefore,

this functional group must not be regarded as FDIR,
until the presence of a fault has been confirmed.

Limitations in the available funding have meant that the

MAASGS concept has not yet been implemented fully.

A number of prototypes of MAASGS modules exist.

For example, the ADIR group of modules has been

developed fully. Prototype PLSs exist, but have not

been tailored for prediction and anomaly detection. The

DUC-ASS application can be seen as a prototype non-
real-time Replanning and Scheduling module. User

interface issues have been partly explored in the agent-

based Application Data Source Simulation Tool
(ADSST) (Grant, 1993a). Between them, these

prototypes have covered the MAASGS functionalities.

It now remains to integrate them, ideally using the

emerging international standards for knowledge
representation (Grant and Poulter, 1993).

Modelling Methodology

The MAASGS modelling methodology starts with

domain decomI_gsition. This can be done top-down,

bottom-up, or middle-out. The second step is to define

the internal database and processing functionality of
each agent. Inter-agent connectivity is defined in the

third step in temps of links and switches. The agents are

initialised in the fourth step. In the fifth step, simulation
scenarios are defined. In several of the MAASGS

prototypes, scenarios can be defined by direct

manipulation of the agents, with the system capturing

the user's manipulations and compiling them as a
scenario. A chosen simulation scenario is run in the

sixth step, and the results are evaluated in step seven.
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Figure 5: MAASGS Agent Structure.

Further Work

Conceptually, the MAASGS architecture is mature. It
has evolved through iterative enhancement, with each

step being tested by implemented systems. All the
MAASGS components exist in developed or prototype
form. The MAASGS architecture should now be

implemented in full.

The first step would be to define all the inter-module

interfaces, preferably using a knowledge
communication standard. In parallel, the user interface

prototyping begun in the ADSST should be extended.
The MAASGS implementation would be built up step-

by-step, starting with a payload simulator to represent
the agent's environment. A suitable sequence tor

adding the modules would be: HCI, Monitoring, Status
Database, Anomaly Detection, Isolation, Execution,

Predictive PLS, Diagnosis, Recovery, Real-Time

Replanning, and finally Scheduling.

Having built up to the full agent structure, a second

phase could begin. From a single agent communicating

with a (simulated) payload, a second agent could be
introduced. This would be best done by inserting the

second agent between the simulated payload and the

existing agent, to model the situation in which a User
Home Base (i.e., the first agent) is subordinate to a

Payload Operations Control Centre (i.e., the second

agent). This situation would model the Dutch
Utilisation Centre (DUC), which combines payload
control at the Dutch national level (i.e., a User Support

Operations Centre, in Columbus/Space Station Freedom

terminology) with a User Home Base. Additional

agents could then be introduced to model further User
Home Bases.

Having achieved a hierarchical agent model of the

ground segment, attention could then turn to the space

segment model. The simulated payload would be

replaced by a further agent. The remainder of the space

segment would then be introduced as additional agents.
A final refinement would be to represent the

communications chain linking the space and ground

segments also as agents. Any part of the complete

agent-based space/ground system model could be
modelled to a higher fidelity at any time by
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decomposingthe part concernedinto subordinate

agents.

Such an agent-based model of the complete
space/ground system could be used in an Operations

Research (or Management Science) role. Functionalities

of selected agents could be switched on or off to

investigate the optimal distribution of functionality.

New functionalities, such as agent learning, could be

assessed by enhancing the generic agent structure.

Different space/ground system architectures could be
investigated by altering the connectivity between

selected agents. For example, "deputy" agents could be
fntroduced for key roles, such as the OBMM or the

Payload Operations Control Centre. Instead of an

OBMS hierarchy, a heterarchy of SSMs could be

evaluated. Another application would be to model

spacecraft constellations by instantiating multiple space

segments.

An agent-based model of the space/ground system
could also be used for operational purposes. It could be

used to evaluate the introduction of additional payloads
and Principle Investigators. It could be used to evaluate

mission timelin.es. Finally, by replacing one or more

software agents with real payloads, subsystems, control

systems, and people, it could be used for verification

and training purposes.

CONCLUSIONS AND RECOMMENDATIONS

This paper has described ESA's Standard Generic

Approach to Spacecraft Autonomy and Automation
(SGASAA). The on-board functionalities have been

outlined. The SGASAA architecture has been depicted.

Multi-Agent Systems (MAS) have been defined, the

motivations for using MAS techniques have been listed,
and relevant MAS issues have been discussed. The

paper has shown that MAS techniques are the most

appropriate solution to modelling space/ground systems,
because such systems are inherently distributed.

BSO/Aerospace & Systems' Multi-Agent Architecture

for Space/Ground Systems (MAASGS) has been
documented. Its evolution has been sketched. The

MAASGS agent structure has been detailed. The
addition of agent-based simulation and C3I features has

been described. The methodology for using the
MAASGS architecture has bccn outlined. Furlhcr work

has been identified. The paper concludes that the
MAASGS architecture is conceptually mature, and
recommends that the architecture should now be

implemented in full.
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